
ARTICLE 

Beyond Computational Formalism or, Architecture Matters 
James E. Dobson1

1 Dartmouth College 

Keywords: neural networks, formalism, machine learning, artificial intelligence, computational literary studies 

https://doi.org/10.22148/001c.133923 

Journal of Cultural Analytics 
Vol. 10, Issue 3, 2025 

Despite frequently avowed commitments to formalist methodologies, 
computational literary studies (CLS) has insufficiently accounted for the 
importance of the formal architectures of the computational models it 
employs—particularly deep learning neural networks. Arguing against the 
tendency to treat neural networks with an abstract gloss of their operation or to 
focus attention on the outputs, this article posits that architecture is not merely 
a technical detail but a crucial site where meaning is made and historicity 
registered. By examining the genealogy of neural network architectures—from 
Frank Rosenblatt’s Perceptron to contemporary transformer-based 
models—this article demonstrates how these architectures materially shape the 
capacities, outputs, and interpretive possibilities of machine learning models. 

The present tendency to reduce the complex assemblage of technologies, 
social and cultural environments, applications and platforms, corporate 
imperatives, and ideology to simply “AI” has not gone unnoticed, and several 
critics and theorists have sought to restore some grounding to this lofty 
signifier (Lindgren; Pasquinelli; Crawford). Even in these attempts to add 
specificity and clarify concepts and methods, however, major differences 
in the specific forms of computation used are usually elided. The rapid 
pace of development of new applications and models—and the subsequent 
obsolescence of once cutting-edge technologies—intentionally abstract and 
deliberately obscured platforms, and a lack of interest in or knowledge 
of technical and operational details have combined to frustrate the task 
of understanding the significance of deep learning, especially in terms 
appropriate to the humanities. Deep learning, as a class of particularly dense 
neural networks, should be understood primarily as an architectural feature; 
the deep in deep learning registers in its name the importance of network 
architecture and is the distinguishing feature of a hierarchical arrangement 
of many layers of network components, modules, and blocks. The blocks 
used in common contemporary transformer-based Large Language Models 
(LLMs) are themselves small but complex mini-architectures. These range 
from relatively simple two-layer fully connected networks, known as Multi-
Layer Perceptrons (MLPs), to self-attention blocks implementing multi-head 
attention, those key features that have contributed significantly to the 
impressive capabilities of these models. It is because of the formal innovations 
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of recent deep learning networks instantiated in specific architectures and 
paired with training data, specific tasks, and fine-tuning data that this most 
recent moment in the long history of AI has been possible. 

In the case of neural networks, as with so much more, form is function. 
Different architectures establish different possible universes of meaning. In 
taking up questions and problems that emerge at the intersection of formalist 
practices in literary, cultural, and media studies and those found in the use 
of the term in the computational sciences, this essay argues that, despite its 
long-term investment in formalism, computational literary studies has not 
been formal enough. It does so through a critical reading of two essays by 
literary studies scholars that stage formalist arguments about the ahistoricity 
of neural networks without taking into account the formal features of these 
networks. My argument, in short, is that because of the process by which 
outputs are derived from computational transformations, any formal analysis 
of these outputs must take into account a formal analysis of the transform 
that created them. 

Form and formalism are invoked in multiple ways in this essay. Form is used 
at times in the familiar way in which literary scholars use the term, to name 
aesthetic or cultural features of an object. To the study of such forms, of 
course, we give the name formalism. An approach termed computational 
formalism might be concerned with recognition, cataloging, and 
categorization of these forms (say for example, genres or plots). To encode, 
directly or indirectly, knowledge about these forms with computation means 
formalizing this knowledge (in terms of samples, explicit features, etc.) in 
a model. All models, as Annabel Jane Wharton argues, differ from their 
referents, but computational models involve formalizations (code, algorithms, 
pipelines, data) that register that difference in the form of assumptions about 
the referent. Nonetheless, Wharton’s succinct observation that “all models are 
entangled in discourse; they have histories, and they act politically” (Wharton 
17) applies equally to computational models. In what follows, I am arguing 
that the form—as instantiated in computational transformations, including 
neural network models—of the formalizations used in computational literary 
studies have similar discursive entanglements, histories, and politics. This is 
to say that the study of forms, in the literary sense, with computation cannot 
be separated from the forms of computation used in that analysis and the 
historicity of those computational transformations. 

Computational literary studies (CLS), the digital humanities, computational 
formalism, cultural analytics—whatever we call the admixture of 
computational methods and humanities methods and objects, depends 
entirely on formalism. This is because computation always requires some 
degree of formalization, although as a user of computational applications or 
tools one might not immediately realize it. The processing of information, 
development of algorithms, definition of programming languages and their 
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syntaxes, and the representation of data depend upon discrete processes and 
concretization, in other words, formalization. In computational research, 
there is a formalism embedded in the framing of questions, the articulation 
of a hypothesis, and the creation of a method through which this hypothesis 
can be evaluated. While more loosely structured and various, there is a 
formalism found in the presentation of inputs. To be more concrete, take 
the encoding of textual inputs used in common contemporary language 
model-based chatbots. These inputs are frequently tagged with labels or 
structured into a paired conversational “prompt.” Beyond chatbot interfaces, 
all inputs to language models are rendered into formalized structures through 
tokenization. Such processes are one aspect of the formalization that makes 
computation possible. Formalization in computation exists, in part, to enable 
comparison and thus it asserts some degree of normalization and 
standardization over its objects. 

The use of form and formalism in the humanities has a slightly different 
history and import than those found in computational science, but it has 
long been acknowledged that formalist approaches, and especially 
structuralist approaches to literary studies, are well-suited to the sort of 
formalization imposed by computation. Northrop Frye, for example, argued 
as much in his talk on “Literary and Mechanical Models” at the annual 
joint meeting of the Association for Literary and Linguistic Computing 
and the Association for Computers and the Humanities in 1989. Marveling 
at what was possible, even at this early stage of “humanities computing,” 
Frye remarked that “at present, in the humanities, computers are doing 
an immense amount of word-crunching, and could easily do much more. 
Concordances have multiplied; dictionaries are no longer assembled from 
hand-written slips; in the study of literature the prospect opens up of having 
the entire verbal corpus of any given literature placed within easy reach” 
(Frye 8). This work, this modeling, Frye hoped, would lead to the fulfillment 
of his dream of a scientific criticism. “Critical schools,” he writes, “like 
philosophical ones, are better thought of as programming models. The 
importance of the computer is in bringing them down to manageable scope, 
so that their essential assumptions can be worked through in a reasonable 
time before they modulate into or merge with something else” (Frye 7). This 
is to say that it is not just the speed or size of corpuses and models, but 
primarily the coding or scoping, as it were, of assumptions into variables that 
would make it possible to operationalize a scientific criticism. 

This more basic insight, that structuralist and formalist practices are highly 
compatible with computation because of the strict encoding of assumptions 
necessary for computing—categories, genres, types, tropes, figures, etc—has 
informed much work in the digital humanities. That the affordances of the 
limited set of forms with which to encode these assumptions available within 
computing might shape the assumptions of humanities researchers has had 
far less of an influence than previously thought. Two recent monographs 
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that make use of computational formalism in their titles are exceptions 
to the dominant tendency in computational work in the humanities to 
reduce formalist claims to only the outputs of transformations; Martin Paul 
Eve’s Close Reading with Computers: Textual Scholarship, Computational 
Formalism, and David Mitchell’s Cloud Atlas (2019) and Amanda 
Wasielewski’s Computational Formalism: Art History and Machine Learning 
(2023) both make an effort to deploy versions what Wasielewski terms 
“methodological self-criticality” (Wasielewski 34) in their respective 
applications of computation to text and images. As computational methods 
increase in complexity and the forms with which one encodes their questions 
and assumptions shift from more-or-less interpretable models of well-defined 
units (words, sentences, paragraphs, books, etc.) to distributed sets of features 
across the units and layers of deep learning networks, identifying these forms 
and the ways in which they shape the work of humanists has simultaneously 
become increasingly difficult and important. 

It perhaps is not surprising that the use of machine learning in humanistic 
research, especially with the advent of large language models, has prompted 
new questions about familiar concerns in literary studies with regard to 
formalism, reading, and interpretation (not to mention questions about 
intentionality and authorship). The debates about distant and close reading 
in the earlier digital humanities discourse contrasted the sequential and 
situated human reading of text with models that re-presented information 
about and aspects of texts. Because the common output objects from 
contemporary generative models are not numerical (insofar as how these 
outputs are typically decoded and displayed to users of web or application-
based generative AI tools) but texts, many scholars have been turned back 
once again to key problematics in the history and practice of textual 
interpretation. Hermeneutics, as I have argued elsewhere, becomes a 
compelling framework once more, although with some work to be done on 
a revision of the hermeneutical concept of a text and its relation to speech 
(Dobson, “On Reading and Interpreting Black Box Deep Neural Networks”; 
Dobson, “Vector Hermeneutics”). At the same time, these familiar-looking 
textual outputs too frequently draw attention away from the formal 
procedures by which these models were created (Offert and Dhaliwal). These 
textual objects are informed by the partially obscured and increasingly opaque 
transformations that have created them. While it is well known that the 
nature of these transformations is shaped by the input or prompt, training 
data used, various types of parameterization, post-training fine-tuning 
procedures and the choice of model or algorithm, too little attention has been 
paid to the formal architecture of the models themselves. These architectures 
give shape to the possible meanings found within the model and their 
affordances determine what can be modeled. Architecture, of both the 
network and the pipeline in which it is embedded, structures meaning, both 
internal to the model and its outputs. While there is much that we do not 
know about how meaning is made in deep learning networks, when it comes 
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to contemporary language models, architectural features are recognized as 
key to their impressive performance and the key sites for understanding how 
these networks model language. The obscurity and opacity surrounding the 
term AI can present complications, or at least undermine methodological 
commitments, when deep learning models are used as part of work in 
computational literary studies. This is especially true of work in CLS that is 
characterized by (or invested in) formalist concerns. 

Reading the Form of Neural Networks       
Claims about the ahistoricity of neural networks are central to this essay’s 
larger argument that in its use of machine learning and artificial intelligence, 
computational literary studies lacks sufficient formalism. The ahistoricity 
depends on abstract rather than formal accounts of these networks and 
models. While it has been acknowledged that deep learning methods and 
distributed pre-trained models have histories in the material sense—which 
is to say that they were created in particular historical moments and are 
informed and shaped by the technical and cultural affordances of their 
creators’ milieu—the historicity of the networks, weights, and their associated 
pipelines have been mostly ignored. Both forms of historicity give rise to 
situated transformations: model inputs encounter the weight of history 
through their processing and through the architectural constraints of models, 
and the outputs are marked by these encounters. This historicity, as the 
following critical readings and analysis will demonstrate, is registered in the 
formal features of the networks and models. These, in turn, inform the 
interpretive possibilities of model outputs. 

In order to gloss the major presupposition supporting the oft-repeated claim 
that neural networks are ahistorical, we need to return to the foundational 
problem of the temporality of learning and training procedures in machine 
learning. While machine learning can be used in both explanatory (and 
related descriptive tasks) and predictive tasks (Shmueli), the primary purpose 
of machine learning is to learn from past patterns to predict future patterns. 
That foundational activity and purpose promotes the critique of the 
historicity of machine learning from a secondary to a primary concern. In 
explanatory machine learning, for example in the case of a classifier trained 
to separate samples into discrete categories, confidence in the decisions made 
by the classifier rests in its ability to generalize its learned criteria beyond 
the limited set of training data. Predictive machine learning has become 
much more important due to the advent of deep learning neural networks 
that alter the network’s internal representation of what has been learned 
(essentially the decision criteria) as a result of its predictive performance, 
such as the now well-known masked language modeling or next token/
sentence prediction tasks used to train large language models. Contemporary 
generative AI applications are built on top of selection mechanisms and 
models from probabilities produced from predictive models. When deployed 
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with neural networks, both categories of machine learning model learned 
representations from historical data, which is to say data presented to the 
network prior to the moment of inference of new inputs. 

The frequent description of the moment of training as clear and distinct 
from inference, which to say deployed for evaluation or use, combined with 
the fact that during typical training periods of many neural networks the 
inputs are iterated through the network multiple times gives rise to the sense 
that it is only the break between training and inference that produces the 
temporality of the model and that everything that comes before that break 
exists in an atemporal continuous iteration of the entire stream of inputs. 
The graphic representation of model loss, which is to say the difference 
between the predicted and labeled (true) values, gives form to some aspects of 
the historicity of model training. A curve in these loss visualizations, ideally 
trending downward, records the history of training epochs in the form of loss 
values. Due to the very large number of inputs, developers of contemporary 
large transformer-based neural networks make use of few epochs. Batched 
inputs, however, are also iteratively presented to even the largest of networks. 
This is the inner loop of the outer epochal training loop. Dividing inputs 
into parallelizable batches incrementally updates parameters, informing, in 
architecture-specific ways, what is learned by the model. Different network 
architectures implement different learning strategies and as a result have 
different modes of historicity, registered in the temporal relation among the 
stream of inputs. 

When used in what we might think of as a read-write mode, a mode 
characterized by the iterative processing mentioned above during initial 
training or during the modification of that training in a process known 
as fine-tuning, deep learning networks continually modify their parameters. 
Deployed in read-only mode for inference or prediction/generation, these 
parameters are no longer subject to updating, although the models may learn 
from patterns provided as input, filtered through what has already been 
learned and fixed in the model’s internal representations. As the number 
of inputs scales—in large language models the size of the input is referred 
to as a context window—learning from these inputs becomes increasingly 
possible and the distinction between learning that takes place during training 
and during inference from inputs becomes less clear (Min et al.). There 
are important differences to be found in the operation of models and in 
the training procedures used in the various neural network architectures, 
especially considering that these are venerable technologies with almost 
seventy years of history. In order to characterize neural networks as lacking 
historicity, one would thus need to make a clear distinction between training 
and inference and between learning and prediction. Such claims generally 
result from abstract rather than concrete and technical accounts of their 
operation. 
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Strangely enough, it is in an essay on the form of neural networks that 
Matthew Kirschenbaum connects the formal attributes of neural networks 
to what he presents as their ahistoricity. In Kirschenbaum’s “Spec Acts: 
Reading Form in Recurrent Neural Networks,” Kirschenbaum argues that 
neural networks are speculative instruments that are “inimical to historicist 
thinking” (Kirschenbaum 364). Neural networks “defy the imperative to 
always historicize,” he argues, because these networks are “progressive and 
unidirectional” (364). Kirschenbaum links the problem of determining the 
history of the network, the sequence of prior inputs that have been seen 
in the process of training the network, to the form of the network, but 
that form itself never emerges as a concrete object of analysis. The network 
of concern to Kirschenbaum is the operation and meaning of a particular 
kind or subcategory of recurrent neural network (RNN) known as a long 
short-term memory (LSTM) network. In place of an analysis of LSTM 
networks, Kirschenbaum produces generalizations about neural networks in 
the abstract. The LSTM network is of special interest to Kirschenbaum 
because it was used by Ross Goodwin in 2017 to process a variety of inputs 
(“temporal, vox, locative, or pictorial” [361]) extracted from Goodwin’s car 
and a network of sensors (supplemented and powered by a set of pre-
trained models and data) and produced while driving from Brooklyn, New 
York to New Orleans, Louisiana. The outputs of this LSTM would become 
a generated text that Goodwin titled 1 the Road. While Kirschenbaum 
acknowledges that he is shifting from specifics to the general—he writes, 
after mentioning OpenAI’s transformer-based GPT-3 generative network, 
that “not all of these natural language processing technologies are neural 
networks of the precise type Goodwin is using, but all of them rely on some 
broadly shared principles of what is generally known as machine learning or 
deep learning” (362)—he leaves out the particular affordances of the LSTM 
network and instead focuses on the description of highly abstract artificial 
neural networks that forecloses entirely his ability to address the question of 
form. 

Despite the sudden dominance of RNN and LSTM networks in the 2010s 
(prior to the advent of the transformer architecture), these networks have a 
surprisingly long history. The LSTM network was first introduced in 1995 by 
Sepp Hochreiter and Jürgen Schmidhuber (Hochreiter and Schmidhuber). 
There were two major innovations of LSTM networks: first, a novel network 
architecture constructed from the base of a RNN with a memory cell 
for holding stored values along with a gate unit; second, a new learning 
algorithm capable of addressing varied, unevenly distributed inputs from 
time-series samples. Hochreiter and Schmidhuber describe the relation of 
this algorithm to the new architecture as such: “gradient-based algorithm for 
an architecture enforcing constant (thus, neither exploding nor vanishing) 
error flow through internal states of special units (provided the gradient 
computation is truncated at certain architecture-specific points; this does 
not affect long-term error flow, though)” (Hochreiter and Schmidhuber 
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1736). As they make clear, there is a tight connection between the learning 
algorithm and the network architecture; the generative capabilities of LSTM 
networks are the result of the orchestration between an architecture-specific 
learning algorithm and the architecture itself, in particular the memory cells 
that enable the creation of a “long short-term” memory of inputs. While 
LSTM networks might be used for similar purposes as other neural networks, 
they have a particular architecture that lends to them the affordances of 
producing convincing output objects from input samples based on a capacity 
for potentially extracting information from the history of encoded data 
stored in their memory cells that made them useful in early generative work 
(Hochreiter and Schmidhuber 1743–1746). 

In explicating what he characterizes as the “fully activated formalism, form 
unconstrained by matter” (378) of neural networks, Kirschenbaum does not 
offer an account of these memory cells and the different ways in which LSTM 
networks can make use of histories (Hochreiter and Schmidhuber, in a now-
familiar formula, assign agency to the network when they write that “the net 
can use inj to decide when to keep or override information in memory cell cj 
and outj to decide when to access memory cell cj and when to prevent other 
units from being perturbed by cj” [Hochreiter and Schmidhuber 1745]). 
Instead of an analysis of these interesting formal features of the LSTM 
network, Kirschenbaum relies upon Orit Halpern’s account of abstract 
neural networks and a description of the operation of neurons within that 
abstract network that he has extracted from Halpern. He argues that “a 
neural network knows only prediction and prognostication, never pastness. 
A neural network never ever historicizes. The gearbox is all additive, 
accumulative” (379). He continues, directly citing from Halpern: 

Media historian Orit Halpern helpfully puts the basic 
underlying concepts in layperson’s terms: “From within the 
net, one cannot determine which neurons fired to excite the 
current situation,” she writes. “From within a net (or network) 
the boundary between perception and cognition, the separation 
between interiority and exteriority, and the organization of 
causal time are indifferentiable.” In other words (again 
Halpern’s): “the temporality of the net is preemptive, it always 
operates in the future perfect tense. . . devoid of historical 
temporalities.” (379) 

In shifting from the particular to the general, Kirschenbaum elides key 
differences in the operations and in the design of these networks. The LSTM 
network, as we have seen, has multiple possible historical states (using or 
overriding information stored in memory cells with new inputs). Even more 
problematic, however, is the fact that the neural networks described by 
Halpern are not the generic networks posited by Kirschenbaum, but actual 
existing and historically specific networks. In Beautiful Data (2014), the 
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source for the above quotation, Halpern was not describing contemporary 
deep learning networks but very early implementations of simplified linear 
learning models (Halpern 157). These are networks without memory cells, 
softmax layers, convolution layers, backpropagation, stochastic gradient 
descent algorithms, without a suite of optimizers, multiple stages of training, 
and reinforcement learning. These are quite different architectures from the 
LSTM network and contemporary deep learning networks; they implement 
different temporalities in their training and inference methods, and they had 
very different affordances for understanding their operation. 

The model invoked by Halpern is the best known and most influential mid-
twentieth century neural network. This is the Perceptron, initially described 
by Cornell University psychologist Frank Rosenblatt in 1957. In Rosenblatt’s 
conception of his project, he makes it clear that the Perceptron was not an 
artificial intelligence device or an algorithm for pattern matching but instead 
it was a simplified brain model. The visual perception system is difficult 
to map and understand, even in relatively uncomplicated animal models 
such as the frog and later cat models that inspired Rosenblatt’s design. In 
his explication of his new model, he refers to the “big mystery” of “how 
the apparently unintelligible tangle of connections in the association area 
manages to record the fact that a beam of light or a landscape is actually seen, 
or a voice heard, and how the impulses from the stimulus are interpreted in 
such a manner as to enable the organism to select the appropriate response 
channel, and no other” (Rosenblatt, Design of an Intelligent Automaton 6). 
Unlike today’s deep learning networks that prioritize performance over all 
other considerations, Rosenblatt’s artificial neural network was designed to 
enable human interpretability. He described it as “a man-made system whose 
‘anatomy’ is known to the last detail” (6). This “anatomy,” the network 
architecture, would eventually enable an entire research program and 
comparative studies between behavioral studies of humans and animals and 
results from experimentation with machine learning models (Rosenblatt and 
Keseler). “Although this system now exists only in concept,” Rosenblatt 
continues in this same report, “it has been shown to be capable of the same 
functions of sensing, recognition, retention, and response selection as its 
biological counterpart” (6). The ability to instrument the model and trace 
what has been learned from supplied inputs to eventual response outputs was 
enabled by its architecture, its anatomy. 

It would be worthwhile to briefly review the architecture of Rosenblatt’s 
Perceptron. Despite misconceptions and wide-spread contemporary 
references to Multi-Layer Perceptrons (MLPs), Rosenblatt’s Perceptron was 
implemented as a multi-layer network. He described the need for three layers, 
even in his earliest conceptual models (Rosenblatt, The Perceptron). That 
initial photoperceptron network was composed of three systems in three 
layers. The first he termed the Sensory or “S” System. This is the input 
layer, and, as the Perceptron was designed for computer vision, Rosenblatt 
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conceptualized this layer “as a set of points in a TV raster, or as a set of 
photocells” (4). Each “neuron” or element was connected to one or more 
elements in the next layer, the Association or “A” System. In contemporary 
terms, this second layer is a “hidden layer.” This layer receives inputs from the 
S System and transmits its output to the next layer. Using fixed parameters 
for a threshold value, it sends output forward if that threshold was reached 
from the sum of input values from neurons in the first layer. Rosenblatt 
writes of the second layer neurons: “The value of an A-unit’s output will 
vary with its history, and acts as a counter, or register for the memory-
function of the system” (4). He called the third and final layer the Response 
or “R” System. In the design for the machine, it “consists typically of a 
relatively small number of units, which may operate type-bars or signal 
lights, and which are activated when the mean or net value of the signals 
received from the A-system exceeds a critical level” (4). The Perceptron’s 
architecture was first imagined as a physical computing machine; it was 
intended to be an alternative to traditional digital computers, but out of 
necessity, primarily the costs involved in developing the complex hardware 
required to implement these multiple layers at a reasonable scale, it was 
initially simulated on a conventional, general-purpose digital computer—an 
IBM 704. This foundational network bears the traces of its design as a 
physical machine—and thus is partly responsible for the name “machine 
learning.” It was, in fact, its architectural limitations that would come to 
determine the reception and fate of Rosenblatt’s Perceptron (Dobson, Birth 
of Computer Vision) and early neural networks in general. 

Architecture, in short, matters. One of the now canonical papers in the 
history of deep learning, the “Going Deeper with Convolutions” conference 
paper that announced the Inception convolutional neural network says as 
much (Szegedy et al.). Despite the emphasis on depth in “going deeper,” what 
we learn is that it is not just the addition of complexity, the adding of more 
layers, that has produced the improvements in this new model, but instead 
the organization of the network—in short, its architecture. In this paper, the 
authors write of their state-of-the-art benchmark crushing network: 

Our GoogLeNet submission to ILSVRC 2014 actually uses 
12 times fewer parameters than the winning architecture…from 
two years ago, while being significantly more accurate. On the 
object detection front, the biggest gains have not come from 
naive application of bigger and bigger deep networks, but from 
the synergy of deep architectures and classical computer vision, 
like the R-CNN algorithm. (Szegedy et al. 1) 

The title riffs on the text “we need to go deeper” from a popular meme 
connected with 2010 film Inception. The authors explain that “the word 
‘deep’ is used in two different meanings: first of all, in the sense that we 
introduce a new level of organization in the form of the ‘Inception module’ 
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and also in the more direct sense of increased network depth” (Szegedy et 
al. 1). It is the architectural feature of recursivity found in a network with 
subnetworks or modules that characterizes GoogLeNet and the convolutional 
layers that organize its image ontology (Dobson, “Objective Vision”). The 
classifications made by a convolutional neural network like GoogLeNet/
Inception cannot be separated from that image ontology that makes for no 
distinction, for example, between background and foreground. 

Without any doubt, today’s most important machine learning architecture 
is the transformer. While “attention is all you need,” as it was stated in 
the title of a conference paper announcing this new architecture, suggests 
that this new paradigm is a simplification, a reduction of complexity, it is 
the addition of an architectural feature that makes these networks distinct 
from previous techniques (Vaswani). Unlike earlier artificial neural network 
architectures, including Rosenblatt’s Perceptron and CNNs, transformers 
were not designed to replicate even rudimentary human or other animal 
cognitive processes. Discarding the convolutional layers of previous models, 
transformers implement a new feature, self-attention, along with fully 
connected feed-forward layers. Attention is a key and value mapping between 
outputs and queries that results in weighted values that register the 
significance of the relations between these keys and queries. Multi-head 
attention allows for greater parallelization and potentially specialization of 
these units. “As side benefit,” the authors write, “self-attention could yield 
more interpretable models. We inspect attention distributions from our 
models and present and discuss examples in the appendix. Not only do 
individual attention heads clearly learn to perform different tasks, many 
appear to exhibit behavior related to the syntactic and semantic structure of 
the sentences” (Vaswani et al. 7). This same insight, that architecture-specific 
components are observed to be specialized for some syntactic relations and 
other linguistic functions, has also been made on behalf of other transformer-
based architectures including BERT (Rogers et al.). 

In contemporary machine learning it has become trivial to load, modify, 
and swap models using different neural networks to analyze or model the 
same inputs. Machine learning pipelines encourage experimentation to select 
better performing networks and to construct ensemble models from multiple 
models and networks. This high degree of modularity obscures differences 
among the potential architectures. That said, even casual users of deep 
learning models are increasingly aware of some major architectural features, 
for example, the number of parameters, layers, inputs, and outputs. At the 
same time, the network graph has become central to much thinking about 
deep learning. Neural networks, as Ranjodh Singh Dhaliwal, Théo Lepage-
Richer, and Lucy Suchman argue, are best understood “not as being created, 
discovered, found, generated, or even studied” but as rendered, which is to say 
broken down, disassembled, and made again (Dhaliwal et al. 13). Thinking 
in terms of these complex graphs has enabled the construction of stacked 
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networks and sub-networks. In commonly used packages such as Pytorch 
(Paszke et al.) and Tensorflow (Abadi et al.), networks are manipulated in 
graph form. The model state saved after modification, for example, preserves 
the graph and its organization and when loading a saved model, 
contemporary machine learning frameworks traverse or walk through and 
verify the integrity of the architecture through its graph. New networks are 
designed as graphs. They are discussed and debated as graphs. Depicting 
neural networks visually as graphs foregrounds architectural differences and 
enables them to be more effectively analyzed, compared, and revised. These 
graphs depict network architecture, and their architectural features are key to 
understanding the flow of information through the network. 

The Multiple Stages of Neural Network Training        
Not only do the selected and implemented architectures determine the 
capabilities and meaning of the outputs of neural networks, but so too does 
the historicity involved in the recent paradigm shift in model training. This 
historicity is fundamentally different from that found in earlier paradigms, in 
which a fixed dataset determined the horizon of possibilities for meaning at 
the moment of training. The advent of self-supervised learning helped make 
the transition to this paradigm possible. The term self-supervised describes 
model training procedures characterized by minimal operator involvement; 
the initial or pre-training of transformer-based large language models typically 
does not include labeled information, only perhaps a generic task like next 
token or sentence prediction. While previous generations of neural language 
models could be trained, fitted, and incrementally retrained, the formalized 
division of training in transformer models is what has given these models 
their impressive capabilities. This division of training has also rendered them 
acceptable for interaction in the form of chatbots. Unsupervised pretraining 
on massive datasets is what makes a large language model both “large” and 
a language model. Researchers speculate that this unsupervised training on 
mountains of language samples provides the models with some degree of 
generalized specialization, which is to say a sense of language features drawn 
from a statistical model. Architecture-defined and determined components 
such as individual neurons or specific attention heads in the networks of 
pretrained large language models might learn to recognize specific parts of 
speech or sets of tokens assumed to share some features, like numerals or 
punctuation. While these base models might encode information needed to 
predict the answer to a math question in the form of next token predictions 
that returns the correct answer with a high degree of probability, they are 
quite limited in predictive power and restricted in their responses. 

In “Poetry Will Not Optimize; or, What is Literature to AI,” Michelle 
Elam examines the possibilities of literary experimentation with OpenAI’s 
transformer-based GPT-3 (Elam). Like Kirschenbaum, Elam is interested 
in reading the texts produced through generative uses of deep learning 
models, what is now commonly called generative AI. She also interrogates 
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the historicity of generative models. Reading Gwern Branwen and Shawn 
Presser’s prompting of GPT-3 with the first four lines of Maya Angelou’s 
“Still I Rise” poem enables Elam to critique the “flattening intergenerational 
significations” (Elam 287) produced by GPT-3 from samples of what may be 
potential Black texts across time. The text produced to complete Angelou’s 
poem is incoherent, “a cringeworthy jumble of blues, Black power, racial 
uplift, and Ole Man River minstrel” (Elam 288). This temporal collapse of 
text fragments motivates Elam’s development of “algorithmic ahistoricity,” a 
conceptualization of the way in which, as she argues, large language models 
may freeze their inputs and treat all text samples as if they were produced in 
the same historical moment. Another dimension of this same problem, she 
argues, is found even in experiments that would be restricted to training on 
the oeuvre of a single author. Elam provides the example of August Wilson’s 
Century Cycle, a set of ten plays, each of which takes up the representation 
of Black life in a different decade of the twentieth century. Wilson works both 
within and against his own periodizing by drawing on linguistic resources 
that are “not rigidly specific to any particular time and place” (288). Elam’s 
critique of AI is rooted in the problem of machine learning’s difficulty in 
modeling dialect, diachronic language, and idiolect, which is to say language’s 
change over time and place as well as those objects that self-consciously 
trouble their own purported historicity. 

These are important problems that large language modeling did not entirely 
address in the shift from static to contextual embeddings. The previous 
generation of neural language models used static embeddings in which a 
single vector was assigned to each word or subword (i.e., token) regardless 
of the context in which that word was used. To preserve different historical 
uses of language, strategies were developed to create and compare separate 
models that were trained on periodized historical sources (Hamilton et al.). 
Contextual embeddings, such as those produced by transformer-based 
networks, encoded the same word or token with different vector values 
depending upon the token’s position in the fragment passed through the 
network and these neighboring tokens. Models can be trained in ways that 
enable historical differentiation of training data and inputs. This approach 
to period-specific training typically involves the creation of multiple models 
or checkpoints on data drawn from sources published during the period 
in question. After these models are created, inference can be performed on 
the individual models and comparisons can be made that might lead to 
insights about discursive changes and historical drift through the embedding 
space. Nonetheless, there are some problems introduced with this model of 
historicity. The largest being that such training generally assumes an even 
distribution of discourse throughout the training data. Also, while iterative 
and periodized training can provide a more restricted semantic space for 
modeling and text generation, it does not solve the other problems raised by 
Elam, that of idiolectic language patterns or texts that play with synchronic 
or anachronistic language. 
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While Elam is right to say that the training sets, the large samples of language 
provided as input to contemporary machine learning models, are 
dehistoricized within the individual stages of training, the resulting model’s 
treatment of these data are historicized. While this might seem like a fine 
distinction, that historicity has important consequences for how meaning is 
made from these dehistoricized data and how history enters into machine 
learning. Elam describes work like the above of periodized training as limited 
by the network’s treatment of the resulting data: 

To be clear, of course one can train an algorithm on historically 
accurate data—that is not my point. Rather, the challenge lies 
with what gets counted as usable data in the first place: the 
historical information for training sets is necessarily treated as a 
set of static points—information already reduced and rendered 
interpretable as usable data. One can add new or different data 
but data itself are treated as ahistorical for the purposes of 
programming. (Elam 286) 

Because Elam is interested in the generative capacity of recent language 
models, there are some architectural specifics that inform and alter the 
historicity of the model following its initial pretraining stage. The advent 
of fine-tuning, the second stage of the now-normalized two-stage training 
process for transformers, modifies the information gleaned from the 
pretraining with some degree of supervision. That supervision can be rather 
heavy handed. To take a widely used and well-known example, classifiers built 
on transformer models that used labeled input samples of language to fine 
tune the model to recognize the difference between positive or negative movie 
reviews. These procedures modify the models through architecture-defined 
features. There are also light-weight versions of supervised fine tuning. 
Reinforcement Learning from Human Feedback or RLHF, would be one 
of these. OpenAI has popularized and improved RLHF techniques in their 
quest to make ChatGPT more friendly, helpful, and most importantly, 
inoffensive (Ouyang et al.). RLHF fine tuning of ChatGPT takes place 
through OpenAI-created directives and preferences held and decisions made 
by evaluators interacting with the model. In modifying the pretrained 
language model to respond according to human preferences for instruction-
based interaction, OpenAI reinscribes aspects of the model and alters its 
historicity. That same process can be seen in the now many open-source 
LLMs available in either their foundation or their initial pre-trained form 
(potentially several checkpoints during the iterative training process) as well 
as in the form of an instruction fine-tuned model using a variety of supervised 
fine-tuning processes including RLHF and Direct Preference Optimization 
(DPO). Such fine-tuning procedures alter the model. They do so in ways 
that are presently hard to understand. The use of fine tuning introduces an 
additional layer—a metaphorical layer—of complexity to the model and its 
interpretability. By not being able to distinguish what has been learned in 
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the form of pretraining and what has been learned from fine tuning, people 
interacting with these models are left to guess the source of predictions. The 
widespread use of such models, without watermarking or even a relatively 
simple hash of the model to guarantee that we are in fact using “GPT-4o” 
or “gpt-4-turbo” as delivered by the now almost completely closed OpenAI, 
exposes users to model manipulation, unexpected ideological shifts, and other 
nefarious possibilities. 

While we are presently unsure how to differentiate, in the examination 
of models and their outputs, pretrained from fine-tuned models, there are 
other temporally significant aspects to such models. There are, for example, 
important distinctions in the representations provided by models. Consider 
that the difference between “in-context” and “in weights” embeddings. The 
term “in weights” has been created to name embeddings, the representations, 
provided by the model, either as the result of learning during pretraining or 
from a fine-tuning process. These representations are different from those 
termed “in-context” (Brown et al.). These are learned representations created 
during model inference. In generative models, the prompt is embedded as 
part of the “in-context” learning. In Elam’s example of Branwen and Presser’s 
generated poem, the first four lines of Angelou’s poem are passed in this 
manner (along with other potential inputs found in the present history of 
prompts). Additional information that alters the model’s response can be 
provided at this point. Retrieval Augmented Generation (RAG) is a generic 
name for a pipeline built on combining information retrieval techniques 
with generation to improve the quality of responses and reference to sources 
by extracting relevant context to append to prompted queries as input for 
generation (Lewis et al.). OpenAI’s GPT-4 has the capacity of 128k tokens 
to be provided as part of this in-context learning. While these do not modify 
the model’s parameters, they will change the model’s behavior. Typically, this 
additional context is provided to improve performance on tasks. In-context 
learning is linked to prompt tuning or prompt engineering; this allows for 
out-of-training examples can be used to modify predictions. This has opened 
up new avenues of critique and also difficulties in interpreting models. 
Open to injection, something akin to SQL injection in which instructions 
are added to data for processing by a database, the prompt is a complex 
input. The use of in-context learning adds another site for historicizing the 
model and produces a complex temporality by combining two moments from 
the past (pretrained + fine-tuned) with the present (inference of in-context 
inputs). Even read-only models—models no longer in training mode—can 
be prompted with large context windows to add additional information, 
examples, or instructions. Such modes of inference without updating, which 
is to say gradient updates of the model, makes for a complex historicization 
of inference from inputs as this activity brings together multiple distinct 
moments of historicity. 

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 15



Interpretation: Mechanistic and Humanistic     
While the previous analysis concerned the historicization of specific network 
architectures and their pipelines, an important additional site of analysis for 
contesting the ahistoricity of neural networks is found in model features, such 
as attention heads in the case of transformers, and in the parameters, which is 
to say the weights and biases, which now number in the billions and trillions. 
The most promising method of interpreting and explaining the operation 
of large language models at present is known as mechanistic interpretation 
(Saphra and Wiegreffe). Research in the area of mechanistic interpretability 
is especially concerned with the operation of individual components within 
machine learning models and targets specific features. This is a highly 
architecture-specific mode of analysis that seeks to examine and instrument 
components of neural network architectures (Sakarvadia et al.). 
Instrumentation sometimes takes place through the attaching of probes, 
in the form of programmatic hooks, to methods (e.g., feed forward or 
back propagation functions). Some researchers propose the monitoring of 
specific “neurons” or dropping or ablating these elements from the network 
(Gurnee et al.) When Kirschenbaum writes of the formal dimensions of 
neural networks in his essay, he means to invoke the idea of form without 
material, which may have explanatory power for certain modes of reading, 
but when he argues that neural networks cannot be probed, he takes what 
might, perhaps, be a local feature of a particular kind of network as a general 
attribute of neural networks as such. Kirschenbaum writes: 

What we read when reading neural networks, I want to argue, 
is a kind of fully activated formalism, form unconstrained by 
matter, form whose manifestations have no necessary base in 
a prior substance or substrate. This is the particular poetry of 
vector space. Neither the input nor the output is ‘immaterial’; 
but the transactions that give rise to form are, for all intents and 
purposes, inapproachable. There is no getting underneath the 
proverbial hood to probe mechanism or engine. (Kirschenbaum 
378–379) 

Contra Kirschenbaum, there are indeed several possible probes that one can 
attach to neural networks to observe and instrument their operation. These 
are not only standard features of contemporary machine learning frameworks 
but some of these instruments are built directly into key data types (tensors) 
used to construct the networks, which is to say that features exist to record 
aspects of the history of the network within the network. 

Research in model interpretability for deep learning networks is moving 
incredibly fast, but several key strategies have been in existence since 
Rosenblatt’s initial investigation of Perceptrons. Guided backpropagation, 
network dissection, concept detectors, these are all mature tools in the 
toolbox for instrumenting and observing neural networks (Thampi). There is 
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an expanding set of tools for probing models, especially the highly popular 
transformer networks. Humanist strategies, such as Jill Walker Rettberg’s 
analysis of “algorithmic failure” provide insight into the opaquest of models 
(Rettberg). Various methods now exist that borrow from the neurosciences 
an interest in functional localization and have provided rough but usable 
analogs for single-cell recordings, sub-network activations, mapping and 
testing mechanisms, and other strategies for understanding the organization 
and operation of deep neural networks. Modeling has identified how 
architectures and architectural features appear to be differently specialized. 
We’ve learned, for example, that across application domains, for both images 
and text, higher layers are specialized for context-specific representations. The 
advent of adversarial techniques has led to the modification of networks 
to test theories about the storage of information in the models. New ways 
of reading and interpreting neural networks as cultural artifacts are being 
developed that attend to the formal dimensions of what Fabian Offert terms 
“a new paradigm of postsymbolic computation” (Offert 425). This area 
has been especially interesting to watch and there is an expanding array of 
techniques to probe and interpret text-based deep learning models (Dobson, 
“On Reading and Interpreting Black Box Deep Neural Networks”). Several 
researchers modifying networks argue that the networks have some sort 
of memory and that one can distinguish facts from other kinds of stored 
knowledge. These researchers have also discovered the exceptionally brittle 
nature of the information held within the model and major issues connected 
to reliability and trustworthiness in the models through their demonstration 
of editing large language models to alter these stored memories, these stored 
“facts” (Meng et al.). 

Conclusion  
I am not particularly invested in the opposition between formalism and 
historicism; I want to historicize computational methods, but as a generation 
of literary and cultural critics have demonstrated, historicization does not 
necessarily involve a rejection of formal concerns. Addressing neural networks 
in the abstract is to assume that they share the same form, the same 
architecture. Doing so ignores the fact that these networks are containers as 
well as functions. They produce a series of transformations; transformations 
that are increasingly constructed from the outputs of other transformations 
within the network. The form, which is to say, the architecture of such 
networks is important for understanding its outputs. The question of the 
historicity of neural networks and their outputs is key to my argument 
because this question cannot begin to be answered without formal analysis of 
network architecture. 

When discussing complex technical objects, it is all too easy to ignore their 
forms. It is also the case that these forms are quite historically situated, 
far more so than the objects that attract attention from most humanists. 
As digital objects, neural networks are instantiated or concretized—as Yuk 
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Hui, who builds on Gilbert Simondon’s earlier, non-digital conception of 
technological concretization, might put it, in a particular historical, cultural, 
and technological milieu (Hui). The architecture, the network graph, 
performs similar ontological work as descriptive metadata in Hui’s reading 
of digital data objects. Orchestrated from already existing components and 
called into being without data, neural networks are digital objects marked 
by their genesis. The imaginary networks of Pitts and McCulloch, Hebb, 
Hubel and Wiesel, or the multiple actually implemented mechanical and 
simulated networks of Frank Rosenblatt have undergone some important 
transformations over time: they have been implemented in different 
programming languages, using different frameworks and paradigms, on 
different hardware and in relation to different inputs and outputs. Newer 
architectures are continuing to be developed as well as novel assemblages 
produced from existing models. Multimodal models, switch transformers, 
mixture of experts: these and other novel paradigms will complicate our 
existing understanding of the temporality of deep learning and how meaning 
is made through the process of inputs passing through the architecture of 
neural networks. 

The stakes of these differences might best be seen in a critical account of 
recent machine learning architectures. Leif Weatherby and Brian Justie make 
much of the distinction between the mappable feature space and unequivocal 
representations found in earlier networks and the learned patterns of those 
produced since the 1990s. Weatherby and Justie take up several recent 
architectures including convolutional neural networks (CNNs) as used in 
computer vision and transformers found in language models as examples of 
what they call “indexical AI.” “Indexical AI,” they argue, “contrasts with 
the symbolic AI that dominated artificial intelligence research before 2000” 
(Weatherby and Justie 382). If symbolic AI names the category of shallower 
networks in which features (pixels, tokens, etc) could be more readily 
identified as representing aspects of the modeled object, the deep networks 
Weatherby and Justie term indexical AI leaves the would-be-interpreter with 
only non-representational pointers and pathways. These pointers and 
pathways work within the space defined by the pre-existing network, which 
they define as a “complex function with a concrete shape” (Weatherby and 
Justie 393). Given this, Weatherby and Justie propose as the only strategy 
available for reading the operation of contemporary networks, a concrete 
analysis that follows the pointers of “complex architecture of indexical 
pathways” (Weatherby and Justie 384). They propose, in short, formal 
analysis of the work of the network within the form instantiated by the 
network. There are other formal strategies for interpreting the large number 
of units and components found within contemporary deep learning 
networks, as well as a set of post-hoc methods for analyzing predictions and 
decisions made by these networks (Dobson, “On Reading and Interpreting 
Black Box Deep Neural Networks”). 
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In this essay I have attempted to demonstrate, contrary to persistent claims 
otherwise, that neural networks have a historicity beyond their material 
origins and that their operations and their outputs do have at least the 
possibility of interpretability. The degree to which they are interpretable 
and important aspects of their historicity is a function of their form. That 
form is primarily registered in their architecture. Thus, any discussion of 
the form of a neural network and its output needs to take into account its 
particular architecture. Once the architectural form of a network is defined, 
from the relatively simple two or three-layer Perceptron to a multi-layered 
convolutional neural network to a transformer with attention heads, the 
historicity of that architecture becomes much more obvious. Faced with a 
model, one might ask why was this particular architecture selected? What 
problem does it solve? What were the alternatives? The biggest challenges 
for would-be-interpreters of neural networks are not found in their opacity 
or the degree to which their transactions might be inapproachable, but are 
the choices made by model developers to obscure their products and the 
details of their construction. The GPT-4 Technical Report, published on 
March 15, 2023, includes the following disclaimers “[GPT-4] it is not fully 
reliable (e.g. can suffer from “hallucinations”), has a limited context window, 
and does not learn from experience…. care should be taken when using the 
outputs of GPT-4, particularly in contexts where reliability is important” 
(OpenAI, et al. 1–2). OpenAI released this model without any description 
of its training sources or details about its architecture despite these claims. 
These limitations have also not prevented OpenAI from working partners, 
supporting and enabling all sorts of plugins, and signing up numerous API 
users. The “Limitations” section of this same report begins with the following 
claim: 

Despite its capabilities, GPT-4 has similar limitations as earlier 
GPT models. Most importantly, it still is not fully reliable 
(it “hallucinates” facts and makes reasoning errors). Great care 
should be taken when using language model outputs, 
particularly in high-stakes contexts, with the exact protocol 
(such as human review, grounding with additional context, 
or avoiding high-stakes uses altogether) matching the needs of 
specific applications. (OpenAI, et al. 10) 

These limitations and a host of other concerns—including, but not limited 
to black-boxed or restricted access to the model, uncertainty about training 
sources, the cost of token inference, toxicity in the model, environmental 
concerns connected to training, etc—make OpenAI’s models inappropriate 
for academic use. The stack of computational work in any scholarly field 
should contain open models and highly interpretable methods as well as 
critical inquiry into methods. The opacity of closed and proprietary models 
like GPT-4 combined with a disinterest in critique and the historicity of 
computation make for a problematic and dangerous environment. While 
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the different kinds of opacity (i.e., intentional, technical illiteracy, intrinsic 
to complexity) found in machine learning, as Jenna Burrell argues, prompt 
different interpretive strategies (Burrell 1–2), multiple forms of opacity can 
easily frustrate attempts to understand the pipeline and its outputs. The 
combination of intentional and complex opacity has also made possible the 
amplification of unsubstantiated claims about these models—from fantasies 
of artificial general intelligence to sentience—and much of the mystification 
surrounding them in the present. Computational literary studies, and indeed 
any efforts toward the study of language models that call themselves 
humanistic, need to remain attentive to the forms of computation and 
the technological and social milieu in which digital objects are created and 
manipulated. 
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