
ARTICLE

Beyond Computational Formalism or, Architecture Matters
James E. Dobson1

1 Dartmouth College

Keywords: neural networks, formalism, machine learning, artificial intelligence, computational literary studies

https://doi.org/10.22148/001c.133923

Journal of Cultural Analytics
Vol. 10, Issue 3, 2025

Despite frequently avowed commitments to formalist methodologies,
computational literary studies (CLS) has insufficiently accounted for the
importance of the formal architectures of the computational models it
employs—particularly deep learning neural networks. Arguing against the
tendency to treat neural networks with an abstract gloss of their operation or to
focus attention on the outputs, this article posits that architecture is not merely
a technical detail but a crucial site where meaning is made and historicity
registered. By examining the genealogy of neural network architectures—from
Frank Rosenblatt’s Perceptron to contemporary transformer-based
models—this article demonstrates how these architectures materially shape the
capacities, outputs, and interpretive possibilities of machine learning models.

The present tendency to reduce the complex assemblage of technologies,
social and cultural environments, applications and platforms, corporate
imperatives, and ideology to simply “AI” has not gone unnoticed, and several
critics and theorists have sought to restore some grounding to this lofty
signifier (Lindgren; Pasquinelli; Crawford). Even in these attempts to add
specificity and clarify concepts and methods, however, major differences
in the specific forms of computation used are usually elided. The rapid
pace of development of new applications and models—and the subsequent
obsolescence of once cutting-edge technologies—intentionally abstract and
deliberately obscured platforms, and a lack of interest in or knowledge
of technical and operational details have combined to frustrate the task
of understanding the significance of deep learning, especially in terms
appropriate to the humanities. Deep learning, as a class of particularly dense
neural networks, should be understood primarily as an architectural feature;
the deep in deep learning registers in its name the importance of network
architecture and is the distinguishing feature of a hierarchical arrangement
of many layers of network components, modules, and blocks. The blocks
used in common contemporary transformer-based Large Language Models
(LLMs) are themselves small but complex mini-architectures. These range
from relatively simple two-layer fully connected networks, known as Multi-
Layer Perceptrons (MLPs), to self-attention blocks implementing multi-head
attention, those key features that have contributed significantly to the
impressive capabilities of these models. It is because of the formal innovations

Dobson, James E. “Beyond Computational Formalism or, Architecture Matters.” Journal
of Cultural Analytics, vol. 10, no. 3, Sept. 2025, https://doi.org/10.22148/001c.133923.

https://orcid.org/0000-0001-8357-7240
https://doi.org/10.22148/001c.133923
https://doi.org/10.22148/001c.133923

of recent deep learning networks instantiated in specific architectures and
paired with training data, specific tasks, and fine-tuning data that this most
recent moment in the long history of AI has been possible.

In the case of neural networks, as with so much more, form is function.
Different architectures establish different possible universes of meaning. In
taking up questions and problems that emerge at the intersection of formalist
practices in literary, cultural, and media studies and those found in the use
of the term in the computational sciences, this essay argues that, despite its
long-term investment in formalism, computational literary studies has not
been formal enough. It does so through a critical reading of two essays by
literary studies scholars that stage formalist arguments about the ahistoricity
of neural networks without taking into account the formal features of these
networks. My argument, in short, is that because of the process by which
outputs are derived from computational transformations, any formal analysis
of these outputs must take into account a formal analysis of the transform
that created them.

Form and formalism are invoked in multiple ways in this essay. Form is used
at times in the familiar way in which literary scholars use the term, to name
aesthetic or cultural features of an object. To the study of such forms, of
course, we give the name formalism. An approach termed computational
formalism might be concerned with recognition, cataloging, and
categorization of these forms (say for example, genres or plots). To encode,
directly or indirectly, knowledge about these forms with computation means
formalizing this knowledge (in terms of samples, explicit features, etc.) in
a model. All models, as Annabel Jane Wharton argues, differ from their
referents, but computational models involve formalizations (code, algorithms,
pipelines, data) that register that difference in the form of assumptions about
the referent. Nonetheless, Wharton’s succinct observation that “all models are
entangled in discourse; they have histories, and they act politically” (Wharton
17) applies equally to computational models. In what follows, I am arguing
that the form—as instantiated in computational transformations, including
neural network models—of the formalizations used in computational literary
studies have similar discursive entanglements, histories, and politics. This is
to say that the study of forms, in the literary sense, with computation cannot
be separated from the forms of computation used in that analysis and the
historicity of those computational transformations.

Computational literary studies (CLS), the digital humanities, computational
formalism, cultural analytics—whatever we call the admixture of
computational methods and humanities methods and objects, depends
entirely on formalism. This is because computation always requires some
degree of formalization, although as a user of computational applications or
tools one might not immediately realize it. The processing of information,
development of algorithms, definition of programming languages and their

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 2

syntaxes, and the representation of data depend upon discrete processes and
concretization, in other words, formalization. In computational research,
there is a formalism embedded in the framing of questions, the articulation
of a hypothesis, and the creation of a method through which this hypothesis
can be evaluated. While more loosely structured and various, there is a
formalism found in the presentation of inputs. To be more concrete, take
the encoding of textual inputs used in common contemporary language
model-based chatbots. These inputs are frequently tagged with labels or
structured into a paired conversational “prompt.” Beyond chatbot interfaces,
all inputs to language models are rendered into formalized structures through
tokenization. Such processes are one aspect of the formalization that makes
computation possible. Formalization in computation exists, in part, to enable
comparison and thus it asserts some degree of normalization and
standardization over its objects.

The use of form and formalism in the humanities has a slightly different
history and import than those found in computational science, but it has
long been acknowledged that formalist approaches, and especially
structuralist approaches to literary studies, are well-suited to the sort of
formalization imposed by computation. Northrop Frye, for example, argued
as much in his talk on “Literary and Mechanical Models” at the annual
joint meeting of the Association for Literary and Linguistic Computing
and the Association for Computers and the Humanities in 1989. Marveling
at what was possible, even at this early stage of “humanities computing,”
Frye remarked that “at present, in the humanities, computers are doing
an immense amount of word-crunching, and could easily do much more.
Concordances have multiplied; dictionaries are no longer assembled from
hand-written slips; in the study of literature the prospect opens up of having
the entire verbal corpus of any given literature placed within easy reach”
(Frye 8). This work, this modeling, Frye hoped, would lead to the fulfillment
of his dream of a scientific criticism. “Critical schools,” he writes, “like
philosophical ones, are better thought of as programming models. The
importance of the computer is in bringing them down to manageable scope,
so that their essential assumptions can be worked through in a reasonable
time before they modulate into or merge with something else” (Frye 7). This
is to say that it is not just the speed or size of corpuses and models, but
primarily the coding or scoping, as it were, of assumptions into variables that
would make it possible to operationalize a scientific criticism.

This more basic insight, that structuralist and formalist practices are highly
compatible with computation because of the strict encoding of assumptions
necessary for computing—categories, genres, types, tropes, figures, etc—has
informed much work in the digital humanities. That the affordances of the
limited set of forms with which to encode these assumptions available within
computing might shape the assumptions of humanities researchers has had
far less of an influence than previously thought. Two recent monographs

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 3

that make use of computational formalism in their titles are exceptions
to the dominant tendency in computational work in the humanities to
reduce formalist claims to only the outputs of transformations; Martin Paul
Eve’s Close Reading with Computers: Textual Scholarship, Computational
Formalism, and David Mitchell’s Cloud Atlas (2019) and Amanda
Wasielewski’s Computational Formalism: Art History and Machine Learning
(2023) both make an effort to deploy versions what Wasielewski terms
“methodological self-criticality” (Wasielewski 34) in their respective
applications of computation to text and images. As computational methods
increase in complexity and the forms with which one encodes their questions
and assumptions shift from more-or-less interpretable models of well-defined
units (words, sentences, paragraphs, books, etc.) to distributed sets of features
across the units and layers of deep learning networks, identifying these forms
and the ways in which they shape the work of humanists has simultaneously
become increasingly difficult and important.

It perhaps is not surprising that the use of machine learning in humanistic
research, especially with the advent of large language models, has prompted
new questions about familiar concerns in literary studies with regard to
formalism, reading, and interpretation (not to mention questions about
intentionality and authorship). The debates about distant and close reading
in the earlier digital humanities discourse contrasted the sequential and
situated human reading of text with models that re-presented information
about and aspects of texts. Because the common output objects from
contemporary generative models are not numerical (insofar as how these
outputs are typically decoded and displayed to users of web or application-
based generative AI tools) but texts, many scholars have been turned back
once again to key problematics in the history and practice of textual
interpretation. Hermeneutics, as I have argued elsewhere, becomes a
compelling framework once more, although with some work to be done on
a revision of the hermeneutical concept of a text and its relation to speech
(Dobson, “On Reading and Interpreting Black Box Deep Neural Networks”;
Dobson, “Vector Hermeneutics”). At the same time, these familiar-looking
textual outputs too frequently draw attention away from the formal
procedures by which these models were created (Offert and Dhaliwal). These
textual objects are informed by the partially obscured and increasingly opaque
transformations that have created them. While it is well known that the
nature of these transformations is shaped by the input or prompt, training
data used, various types of parameterization, post-training fine-tuning
procedures and the choice of model or algorithm, too little attention has been
paid to the formal architecture of the models themselves. These architectures
give shape to the possible meanings found within the model and their
affordances determine what can be modeled. Architecture, of both the
network and the pipeline in which it is embedded, structures meaning, both
internal to the model and its outputs. While there is much that we do not
know about how meaning is made in deep learning networks, when it comes

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 4

to contemporary language models, architectural features are recognized as
key to their impressive performance and the key sites for understanding how
these networks model language. The obscurity and opacity surrounding the
term AI can present complications, or at least undermine methodological
commitments, when deep learning models are used as part of work in
computational literary studies. This is especially true of work in CLS that is
characterized by (or invested in) formalist concerns.

Reading the Form of Neural Networks
Claims about the ahistoricity of neural networks are central to this essay’s
larger argument that in its use of machine learning and artificial intelligence,
computational literary studies lacks sufficient formalism. The ahistoricity
depends on abstract rather than formal accounts of these networks and
models. While it has been acknowledged that deep learning methods and
distributed pre-trained models have histories in the material sense—which
is to say that they were created in particular historical moments and are
informed and shaped by the technical and cultural affordances of their
creators’ milieu—the historicity of the networks, weights, and their associated
pipelines have been mostly ignored. Both forms of historicity give rise to
situated transformations: model inputs encounter the weight of history
through their processing and through the architectural constraints of models,
and the outputs are marked by these encounters. This historicity, as the
following critical readings and analysis will demonstrate, is registered in the
formal features of the networks and models. These, in turn, inform the
interpretive possibilities of model outputs.

In order to gloss the major presupposition supporting the oft-repeated claim
that neural networks are ahistorical, we need to return to the foundational
problem of the temporality of learning and training procedures in machine
learning. While machine learning can be used in both explanatory (and
related descriptive tasks) and predictive tasks (Shmueli), the primary purpose
of machine learning is to learn from past patterns to predict future patterns.
That foundational activity and purpose promotes the critique of the
historicity of machine learning from a secondary to a primary concern. In
explanatory machine learning, for example in the case of a classifier trained
to separate samples into discrete categories, confidence in the decisions made
by the classifier rests in its ability to generalize its learned criteria beyond
the limited set of training data. Predictive machine learning has become
much more important due to the advent of deep learning neural networks
that alter the network’s internal representation of what has been learned
(essentially the decision criteria) as a result of its predictive performance,
such as the now well-known masked language modeling or next token/
sentence prediction tasks used to train large language models. Contemporary
generative AI applications are built on top of selection mechanisms and
models from probabilities produced from predictive models. When deployed

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 5

with neural networks, both categories of machine learning model learned
representations from historical data, which is to say data presented to the
network prior to the moment of inference of new inputs.

The frequent description of the moment of training as clear and distinct
from inference, which to say deployed for evaluation or use, combined with
the fact that during typical training periods of many neural networks the
inputs are iterated through the network multiple times gives rise to the sense
that it is only the break between training and inference that produces the
temporality of the model and that everything that comes before that break
exists in an atemporal continuous iteration of the entire stream of inputs.
The graphic representation of model loss, which is to say the difference
between the predicted and labeled (true) values, gives form to some aspects of
the historicity of model training. A curve in these loss visualizations, ideally
trending downward, records the history of training epochs in the form of loss
values. Due to the very large number of inputs, developers of contemporary
large transformer-based neural networks make use of few epochs. Batched
inputs, however, are also iteratively presented to even the largest of networks.
This is the inner loop of the outer epochal training loop. Dividing inputs
into parallelizable batches incrementally updates parameters, informing, in
architecture-specific ways, what is learned by the model. Different network
architectures implement different learning strategies and as a result have
different modes of historicity, registered in the temporal relation among the
stream of inputs.

When used in what we might think of as a read-write mode, a mode
characterized by the iterative processing mentioned above during initial
training or during the modification of that training in a process known
as fine-tuning, deep learning networks continually modify their parameters.
Deployed in read-only mode for inference or prediction/generation, these
parameters are no longer subject to updating, although the models may learn
from patterns provided as input, filtered through what has already been
learned and fixed in the model’s internal representations. As the number
of inputs scales—in large language models the size of the input is referred
to as a context window—learning from these inputs becomes increasingly
possible and the distinction between learning that takes place during training
and during inference from inputs becomes less clear (Min et al.). There
are important differences to be found in the operation of models and in
the training procedures used in the various neural network architectures,
especially considering that these are venerable technologies with almost
seventy years of history. In order to characterize neural networks as lacking
historicity, one would thus need to make a clear distinction between training
and inference and between learning and prediction. Such claims generally
result from abstract rather than concrete and technical accounts of their
operation.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 6

Strangely enough, it is in an essay on the form of neural networks that
Matthew Kirschenbaum connects the formal attributes of neural networks
to what he presents as their ahistoricity. In Kirschenbaum’s “Spec Acts:
Reading Form in Recurrent Neural Networks,” Kirschenbaum argues that
neural networks are speculative instruments that are “inimical to historicist
thinking” (Kirschenbaum 364). Neural networks “defy the imperative to
always historicize,” he argues, because these networks are “progressive and
unidirectional” (364). Kirschenbaum links the problem of determining the
history of the network, the sequence of prior inputs that have been seen
in the process of training the network, to the form of the network, but
that form itself never emerges as a concrete object of analysis. The network
of concern to Kirschenbaum is the operation and meaning of a particular
kind or subcategory of recurrent neural network (RNN) known as a long
short-term memory (LSTM) network. In place of an analysis of LSTM
networks, Kirschenbaum produces generalizations about neural networks in
the abstract. The LSTM network is of special interest to Kirschenbaum
because it was used by Ross Goodwin in 2017 to process a variety of inputs
(“temporal, vox, locative, or pictorial” [361]) extracted from Goodwin’s car
and a network of sensors (supplemented and powered by a set of pre-
trained models and data) and produced while driving from Brooklyn, New
York to New Orleans, Louisiana. The outputs of this LSTM would become
a generated text that Goodwin titled 1 the Road. While Kirschenbaum
acknowledges that he is shifting from specifics to the general—he writes,
after mentioning OpenAI’s transformer-based GPT-3 generative network,
that “not all of these natural language processing technologies are neural
networks of the precise type Goodwin is using, but all of them rely on some
broadly shared principles of what is generally known as machine learning or
deep learning” (362)—he leaves out the particular affordances of the LSTM
network and instead focuses on the description of highly abstract artificial
neural networks that forecloses entirely his ability to address the question of
form.

Despite the sudden dominance of RNN and LSTM networks in the 2010s
(prior to the advent of the transformer architecture), these networks have a
surprisingly long history. The LSTM network was first introduced in 1995 by
Sepp Hochreiter and Jürgen Schmidhuber (Hochreiter and Schmidhuber).
There were two major innovations of LSTM networks: first, a novel network
architecture constructed from the base of a RNN with a memory cell
for holding stored values along with a gate unit; second, a new learning
algorithm capable of addressing varied, unevenly distributed inputs from
time-series samples. Hochreiter and Schmidhuber describe the relation of
this algorithm to the new architecture as such: “gradient-based algorithm for
an architecture enforcing constant (thus, neither exploding nor vanishing)
error flow through internal states of special units (provided the gradient
computation is truncated at certain architecture-specific points; this does
not affect long-term error flow, though)” (Hochreiter and Schmidhuber

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 7

1736). As they make clear, there is a tight connection between the learning
algorithm and the network architecture; the generative capabilities of LSTM
networks are the result of the orchestration between an architecture-specific
learning algorithm and the architecture itself, in particular the memory cells
that enable the creation of a “long short-term” memory of inputs. While
LSTM networks might be used for similar purposes as other neural networks,
they have a particular architecture that lends to them the affordances of
producing convincing output objects from input samples based on a capacity
for potentially extracting information from the history of encoded data
stored in their memory cells that made them useful in early generative work
(Hochreiter and Schmidhuber 1743–1746).

In explicating what he characterizes as the “fully activated formalism, form
unconstrained by matter” (378) of neural networks, Kirschenbaum does not
offer an account of these memory cells and the different ways in which LSTM
networks can make use of histories (Hochreiter and Schmidhuber, in a now-
familiar formula, assign agency to the network when they write that “the net
can use inj to decide when to keep or override information in memory cell cj
and outj to decide when to access memory cell cj and when to prevent other
units from being perturbed by cj” [Hochreiter and Schmidhuber 1745]).
Instead of an analysis of these interesting formal features of the LSTM
network, Kirschenbaum relies upon Orit Halpern’s account of abstract
neural networks and a description of the operation of neurons within that
abstract network that he has extracted from Halpern. He argues that “a
neural network knows only prediction and prognostication, never pastness.
A neural network never ever historicizes. The gearbox is all additive,
accumulative” (379). He continues, directly citing from Halpern:

Media historian Orit Halpern helpfully puts the basic
underlying concepts in layperson’s terms: “From within the
net, one cannot determine which neurons fired to excite the
current situation,” she writes. “From within a net (or network)
the boundary between perception and cognition, the separation
between interiority and exteriority, and the organization of
causal time are indifferentiable.” In other words (again
Halpern’s): “the temporality of the net is preemptive, it always
operates in the future perfect tense. . . devoid of historical
temporalities.” (379)

In shifting from the particular to the general, Kirschenbaum elides key
differences in the operations and in the design of these networks. The LSTM
network, as we have seen, has multiple possible historical states (using or
overriding information stored in memory cells with new inputs). Even more
problematic, however, is the fact that the neural networks described by
Halpern are not the generic networks posited by Kirschenbaum, but actual
existing and historically specific networks. In Beautiful Data (2014), the

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 8

source for the above quotation, Halpern was not describing contemporary
deep learning networks but very early implementations of simplified linear
learning models (Halpern 157). These are networks without memory cells,
softmax layers, convolution layers, backpropagation, stochastic gradient
descent algorithms, without a suite of optimizers, multiple stages of training,
and reinforcement learning. These are quite different architectures from the
LSTM network and contemporary deep learning networks; they implement
different temporalities in their training and inference methods, and they had
very different affordances for understanding their operation.

The model invoked by Halpern is the best known and most influential mid-
twentieth century neural network. This is the Perceptron, initially described
by Cornell University psychologist Frank Rosenblatt in 1957. In Rosenblatt’s
conception of his project, he makes it clear that the Perceptron was not an
artificial intelligence device or an algorithm for pattern matching but instead
it was a simplified brain model. The visual perception system is difficult
to map and understand, even in relatively uncomplicated animal models
such as the frog and later cat models that inspired Rosenblatt’s design. In
his explication of his new model, he refers to the “big mystery” of “how
the apparently unintelligible tangle of connections in the association area
manages to record the fact that a beam of light or a landscape is actually seen,
or a voice heard, and how the impulses from the stimulus are interpreted in
such a manner as to enable the organism to select the appropriate response
channel, and no other” (Rosenblatt, Design of an Intelligent Automaton 6).
Unlike today’s deep learning networks that prioritize performance over all
other considerations, Rosenblatt’s artificial neural network was designed to
enable human interpretability. He described it as “a man-made system whose
‘anatomy’ is known to the last detail” (6). This “anatomy,” the network
architecture, would eventually enable an entire research program and
comparative studies between behavioral studies of humans and animals and
results from experimentation with machine learning models (Rosenblatt and
Keseler). “Although this system now exists only in concept,” Rosenblatt
continues in this same report, “it has been shown to be capable of the same
functions of sensing, recognition, retention, and response selection as its
biological counterpart” (6). The ability to instrument the model and trace
what has been learned from supplied inputs to eventual response outputs was
enabled by its architecture, its anatomy.

It would be worthwhile to briefly review the architecture of Rosenblatt’s
Perceptron. Despite misconceptions and wide-spread contemporary
references to Multi-Layer Perceptrons (MLPs), Rosenblatt’s Perceptron was
implemented as a multi-layer network. He described the need for three layers,
even in his earliest conceptual models (Rosenblatt, The Perceptron). That
initial photoperceptron network was composed of three systems in three
layers. The first he termed the Sensory or “S” System. This is the input
layer, and, as the Perceptron was designed for computer vision, Rosenblatt

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 9

conceptualized this layer “as a set of points in a TV raster, or as a set of
photocells” (4). Each “neuron” or element was connected to one or more
elements in the next layer, the Association or “A” System. In contemporary
terms, this second layer is a “hidden layer.” This layer receives inputs from the
S System and transmits its output to the next layer. Using fixed parameters
for a threshold value, it sends output forward if that threshold was reached
from the sum of input values from neurons in the first layer. Rosenblatt
writes of the second layer neurons: “The value of an A-unit’s output will
vary with its history, and acts as a counter, or register for the memory-
function of the system” (4). He called the third and final layer the Response
or “R” System. In the design for the machine, it “consists typically of a
relatively small number of units, which may operate type-bars or signal
lights, and which are activated when the mean or net value of the signals
received from the A-system exceeds a critical level” (4). The Perceptron’s
architecture was first imagined as a physical computing machine; it was
intended to be an alternative to traditional digital computers, but out of
necessity, primarily the costs involved in developing the complex hardware
required to implement these multiple layers at a reasonable scale, it was
initially simulated on a conventional, general-purpose digital computer—an
IBM 704. This foundational network bears the traces of its design as a
physical machine—and thus is partly responsible for the name “machine
learning.” It was, in fact, its architectural limitations that would come to
determine the reception and fate of Rosenblatt’s Perceptron (Dobson, Birth
of Computer Vision) and early neural networks in general.

Architecture, in short, matters. One of the now canonical papers in the
history of deep learning, the “Going Deeper with Convolutions” conference
paper that announced the Inception convolutional neural network says as
much (Szegedy et al.). Despite the emphasis on depth in “going deeper,” what
we learn is that it is not just the addition of complexity, the adding of more
layers, that has produced the improvements in this new model, but instead
the organization of the network—in short, its architecture. In this paper, the
authors write of their state-of-the-art benchmark crushing network:

Our GoogLeNet submission to ILSVRC 2014 actually uses
12 times fewer parameters than the winning architecture…from
two years ago, while being significantly more accurate. On the
object detection front, the biggest gains have not come from
naive application of bigger and bigger deep networks, but from
the synergy of deep architectures and classical computer vision,
like the R-CNN algorithm. (Szegedy et al. 1)

The title riffs on the text “we need to go deeper” from a popular meme
connected with 2010 film Inception. The authors explain that “the word
‘deep’ is used in two different meanings: first of all, in the sense that we
introduce a new level of organization in the form of the ‘Inception module’

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 10

and also in the more direct sense of increased network depth” (Szegedy et
al. 1). It is the architectural feature of recursivity found in a network with
subnetworks or modules that characterizes GoogLeNet and the convolutional
layers that organize its image ontology (Dobson, “Objective Vision”). The
classifications made by a convolutional neural network like GoogLeNet/
Inception cannot be separated from that image ontology that makes for no
distinction, for example, between background and foreground.

Without any doubt, today’s most important machine learning architecture
is the transformer. While “attention is all you need,” as it was stated in
the title of a conference paper announcing this new architecture, suggests
that this new paradigm is a simplification, a reduction of complexity, it is
the addition of an architectural feature that makes these networks distinct
from previous techniques (Vaswani). Unlike earlier artificial neural network
architectures, including Rosenblatt’s Perceptron and CNNs, transformers
were not designed to replicate even rudimentary human or other animal
cognitive processes. Discarding the convolutional layers of previous models,
transformers implement a new feature, self-attention, along with fully
connected feed-forward layers. Attention is a key and value mapping between
outputs and queries that results in weighted values that register the
significance of the relations between these keys and queries. Multi-head
attention allows for greater parallelization and potentially specialization of
these units. “As side benefit,” the authors write, “self-attention could yield
more interpretable models. We inspect attention distributions from our
models and present and discuss examples in the appendix. Not only do
individual attention heads clearly learn to perform different tasks, many
appear to exhibit behavior related to the syntactic and semantic structure of
the sentences” (Vaswani et al. 7). This same insight, that architecture-specific
components are observed to be specialized for some syntactic relations and
other linguistic functions, has also been made on behalf of other transformer-
based architectures including BERT (Rogers et al.).

In contemporary machine learning it has become trivial to load, modify,
and swap models using different neural networks to analyze or model the
same inputs. Machine learning pipelines encourage experimentation to select
better performing networks and to construct ensemble models from multiple
models and networks. This high degree of modularity obscures differences
among the potential architectures. That said, even casual users of deep
learning models are increasingly aware of some major architectural features,
for example, the number of parameters, layers, inputs, and outputs. At the
same time, the network graph has become central to much thinking about
deep learning. Neural networks, as Ranjodh Singh Dhaliwal, Théo Lepage-
Richer, and Lucy Suchman argue, are best understood “not as being created,
discovered, found, generated, or even studied” but as rendered, which is to say
broken down, disassembled, and made again (Dhaliwal et al. 13). Thinking
in terms of these complex graphs has enabled the construction of stacked

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 11

networks and sub-networks. In commonly used packages such as Pytorch
(Paszke et al.) and Tensorflow (Abadi et al.), networks are manipulated in
graph form. The model state saved after modification, for example, preserves
the graph and its organization and when loading a saved model,
contemporary machine learning frameworks traverse or walk through and
verify the integrity of the architecture through its graph. New networks are
designed as graphs. They are discussed and debated as graphs. Depicting
neural networks visually as graphs foregrounds architectural differences and
enables them to be more effectively analyzed, compared, and revised. These
graphs depict network architecture, and their architectural features are key to
understanding the flow of information through the network.

The Multiple Stages of Neural Network Training
Not only do the selected and implemented architectures determine the
capabilities and meaning of the outputs of neural networks, but so too does
the historicity involved in the recent paradigm shift in model training. This
historicity is fundamentally different from that found in earlier paradigms, in
which a fixed dataset determined the horizon of possibilities for meaning at
the moment of training. The advent of self-supervised learning helped make
the transition to this paradigm possible. The term self-supervised describes
model training procedures characterized by minimal operator involvement;
the initial or pre-training of transformer-based large language models typically
does not include labeled information, only perhaps a generic task like next
token or sentence prediction. While previous generations of neural language
models could be trained, fitted, and incrementally retrained, the formalized
division of training in transformer models is what has given these models
their impressive capabilities. This division of training has also rendered them
acceptable for interaction in the form of chatbots. Unsupervised pretraining
on massive datasets is what makes a large language model both “large” and
a language model. Researchers speculate that this unsupervised training on
mountains of language samples provides the models with some degree of
generalized specialization, which is to say a sense of language features drawn
from a statistical model. Architecture-defined and determined components
such as individual neurons or specific attention heads in the networks of
pretrained large language models might learn to recognize specific parts of
speech or sets of tokens assumed to share some features, like numerals or
punctuation. While these base models might encode information needed to
predict the answer to a math question in the form of next token predictions
that returns the correct answer with a high degree of probability, they are
quite limited in predictive power and restricted in their responses.

In “Poetry Will Not Optimize; or, What is Literature to AI,” Michelle
Elam examines the possibilities of literary experimentation with OpenAI’s
transformer-based GPT-3 (Elam). Like Kirschenbaum, Elam is interested
in reading the texts produced through generative uses of deep learning
models, what is now commonly called generative AI. She also interrogates

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 12

the historicity of generative models. Reading Gwern Branwen and Shawn
Presser’s prompting of GPT-3 with the first four lines of Maya Angelou’s
“Still I Rise” poem enables Elam to critique the “flattening intergenerational
significations” (Elam 287) produced by GPT-3 from samples of what may be
potential Black texts across time. The text produced to complete Angelou’s
poem is incoherent, “a cringeworthy jumble of blues, Black power, racial
uplift, and Ole Man River minstrel” (Elam 288). This temporal collapse of
text fragments motivates Elam’s development of “algorithmic ahistoricity,” a
conceptualization of the way in which, as she argues, large language models
may freeze their inputs and treat all text samples as if they were produced in
the same historical moment. Another dimension of this same problem, she
argues, is found even in experiments that would be restricted to training on
the oeuvre of a single author. Elam provides the example of August Wilson’s
Century Cycle, a set of ten plays, each of which takes up the representation
of Black life in a different decade of the twentieth century. Wilson works both
within and against his own periodizing by drawing on linguistic resources
that are “not rigidly specific to any particular time and place” (288). Elam’s
critique of AI is rooted in the problem of machine learning’s difficulty in
modeling dialect, diachronic language, and idiolect, which is to say language’s
change over time and place as well as those objects that self-consciously
trouble their own purported historicity.

These are important problems that large language modeling did not entirely
address in the shift from static to contextual embeddings. The previous
generation of neural language models used static embeddings in which a
single vector was assigned to each word or subword (i.e., token) regardless
of the context in which that word was used. To preserve different historical
uses of language, strategies were developed to create and compare separate
models that were trained on periodized historical sources (Hamilton et al.).
Contextual embeddings, such as those produced by transformer-based
networks, encoded the same word or token with different vector values
depending upon the token’s position in the fragment passed through the
network and these neighboring tokens. Models can be trained in ways that
enable historical differentiation of training data and inputs. This approach
to period-specific training typically involves the creation of multiple models
or checkpoints on data drawn from sources published during the period
in question. After these models are created, inference can be performed on
the individual models and comparisons can be made that might lead to
insights about discursive changes and historical drift through the embedding
space. Nonetheless, there are some problems introduced with this model of
historicity. The largest being that such training generally assumes an even
distribution of discourse throughout the training data. Also, while iterative
and periodized training can provide a more restricted semantic space for
modeling and text generation, it does not solve the other problems raised by
Elam, that of idiolectic language patterns or texts that play with synchronic
or anachronistic language.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 13

While Elam is right to say that the training sets, the large samples of language
provided as input to contemporary machine learning models, are
dehistoricized within the individual stages of training, the resulting model’s
treatment of these data are historicized. While this might seem like a fine
distinction, that historicity has important consequences for how meaning is
made from these dehistoricized data and how history enters into machine
learning. Elam describes work like the above of periodized training as limited
by the network’s treatment of the resulting data:

To be clear, of course one can train an algorithm on historically
accurate data—that is not my point. Rather, the challenge lies
with what gets counted as usable data in the first place: the
historical information for training sets is necessarily treated as a
set of static points—information already reduced and rendered
interpretable as usable data. One can add new or different data
but data itself are treated as ahistorical for the purposes of
programming. (Elam 286)

Because Elam is interested in the generative capacity of recent language
models, there are some architectural specifics that inform and alter the
historicity of the model following its initial pretraining stage. The advent
of fine-tuning, the second stage of the now-normalized two-stage training
process for transformers, modifies the information gleaned from the
pretraining with some degree of supervision. That supervision can be rather
heavy handed. To take a widely used and well-known example, classifiers built
on transformer models that used labeled input samples of language to fine
tune the model to recognize the difference between positive or negative movie
reviews. These procedures modify the models through architecture-defined
features. There are also light-weight versions of supervised fine tuning.
Reinforcement Learning from Human Feedback or RLHF, would be one
of these. OpenAI has popularized and improved RLHF techniques in their
quest to make ChatGPT more friendly, helpful, and most importantly,
inoffensive (Ouyang et al.). RLHF fine tuning of ChatGPT takes place
through OpenAI-created directives and preferences held and decisions made
by evaluators interacting with the model. In modifying the pretrained
language model to respond according to human preferences for instruction-
based interaction, OpenAI reinscribes aspects of the model and alters its
historicity. That same process can be seen in the now many open-source
LLMs available in either their foundation or their initial pre-trained form
(potentially several checkpoints during the iterative training process) as well
as in the form of an instruction fine-tuned model using a variety of supervised
fine-tuning processes including RLHF and Direct Preference Optimization
(DPO). Such fine-tuning procedures alter the model. They do so in ways
that are presently hard to understand. The use of fine tuning introduces an
additional layer—a metaphorical layer—of complexity to the model and its
interpretability. By not being able to distinguish what has been learned in

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 14

the form of pretraining and what has been learned from fine tuning, people
interacting with these models are left to guess the source of predictions. The
widespread use of such models, without watermarking or even a relatively
simple hash of the model to guarantee that we are in fact using “GPT-4o”
or “gpt-4-turbo” as delivered by the now almost completely closed OpenAI,
exposes users to model manipulation, unexpected ideological shifts, and other
nefarious possibilities.

While we are presently unsure how to differentiate, in the examination
of models and their outputs, pretrained from fine-tuned models, there are
other temporally significant aspects to such models. There are, for example,
important distinctions in the representations provided by models. Consider
that the difference between “in-context” and “in weights” embeddings. The
term “in weights” has been created to name embeddings, the representations,
provided by the model, either as the result of learning during pretraining or
from a fine-tuning process. These representations are different from those
termed “in-context” (Brown et al.). These are learned representations created
during model inference. In generative models, the prompt is embedded as
part of the “in-context” learning. In Elam’s example of Branwen and Presser’s
generated poem, the first four lines of Angelou’s poem are passed in this
manner (along with other potential inputs found in the present history of
prompts). Additional information that alters the model’s response can be
provided at this point. Retrieval Augmented Generation (RAG) is a generic
name for a pipeline built on combining information retrieval techniques
with generation to improve the quality of responses and reference to sources
by extracting relevant context to append to prompted queries as input for
generation (Lewis et al.). OpenAI’s GPT-4 has the capacity of 128k tokens
to be provided as part of this in-context learning. While these do not modify
the model’s parameters, they will change the model’s behavior. Typically, this
additional context is provided to improve performance on tasks. In-context
learning is linked to prompt tuning or prompt engineering; this allows for
out-of-training examples can be used to modify predictions. This has opened
up new avenues of critique and also difficulties in interpreting models.
Open to injection, something akin to SQL injection in which instructions
are added to data for processing by a database, the prompt is a complex
input. The use of in-context learning adds another site for historicizing the
model and produces a complex temporality by combining two moments from
the past (pretrained + fine-tuned) with the present (inference of in-context
inputs). Even read-only models—models no longer in training mode—can
be prompted with large context windows to add additional information,
examples, or instructions. Such modes of inference without updating, which
is to say gradient updates of the model, makes for a complex historicization
of inference from inputs as this activity brings together multiple distinct
moments of historicity.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 15

Interpretation: Mechanistic and Humanistic
While the previous analysis concerned the historicization of specific network
architectures and their pipelines, an important additional site of analysis for
contesting the ahistoricity of neural networks is found in model features, such
as attention heads in the case of transformers, and in the parameters, which is
to say the weights and biases, which now number in the billions and trillions.
The most promising method of interpreting and explaining the operation
of large language models at present is known as mechanistic interpretation
(Saphra and Wiegreffe). Research in the area of mechanistic interpretability
is especially concerned with the operation of individual components within
machine learning models and targets specific features. This is a highly
architecture-specific mode of analysis that seeks to examine and instrument
components of neural network architectures (Sakarvadia et al.).
Instrumentation sometimes takes place through the attaching of probes,
in the form of programmatic hooks, to methods (e.g., feed forward or
back propagation functions). Some researchers propose the monitoring of
specific “neurons” or dropping or ablating these elements from the network
(Gurnee et al.) When Kirschenbaum writes of the formal dimensions of
neural networks in his essay, he means to invoke the idea of form without
material, which may have explanatory power for certain modes of reading,
but when he argues that neural networks cannot be probed, he takes what
might, perhaps, be a local feature of a particular kind of network as a general
attribute of neural networks as such. Kirschenbaum writes:

What we read when reading neural networks, I want to argue,
is a kind of fully activated formalism, form unconstrained by
matter, form whose manifestations have no necessary base in
a prior substance or substrate. This is the particular poetry of
vector space. Neither the input nor the output is ‘immaterial’;
but the transactions that give rise to form are, for all intents and
purposes, inapproachable. There is no getting underneath the
proverbial hood to probe mechanism or engine. (Kirschenbaum
378–379)

Contra Kirschenbaum, there are indeed several possible probes that one can
attach to neural networks to observe and instrument their operation. These
are not only standard features of contemporary machine learning frameworks
but some of these instruments are built directly into key data types (tensors)
used to construct the networks, which is to say that features exist to record
aspects of the history of the network within the network.

Research in model interpretability for deep learning networks is moving
incredibly fast, but several key strategies have been in existence since
Rosenblatt’s initial investigation of Perceptrons. Guided backpropagation,
network dissection, concept detectors, these are all mature tools in the
toolbox for instrumenting and observing neural networks (Thampi). There is

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 16

an expanding set of tools for probing models, especially the highly popular
transformer networks. Humanist strategies, such as Jill Walker Rettberg’s
analysis of “algorithmic failure” provide insight into the opaquest of models
(Rettberg). Various methods now exist that borrow from the neurosciences
an interest in functional localization and have provided rough but usable
analogs for single-cell recordings, sub-network activations, mapping and
testing mechanisms, and other strategies for understanding the organization
and operation of deep neural networks. Modeling has identified how
architectures and architectural features appear to be differently specialized.
We’ve learned, for example, that across application domains, for both images
and text, higher layers are specialized for context-specific representations. The
advent of adversarial techniques has led to the modification of networks
to test theories about the storage of information in the models. New ways
of reading and interpreting neural networks as cultural artifacts are being
developed that attend to the formal dimensions of what Fabian Offert terms
“a new paradigm of postsymbolic computation” (Offert 425). This area
has been especially interesting to watch and there is an expanding array of
techniques to probe and interpret text-based deep learning models (Dobson,
“On Reading and Interpreting Black Box Deep Neural Networks”). Several
researchers modifying networks argue that the networks have some sort
of memory and that one can distinguish facts from other kinds of stored
knowledge. These researchers have also discovered the exceptionally brittle
nature of the information held within the model and major issues connected
to reliability and trustworthiness in the models through their demonstration
of editing large language models to alter these stored memories, these stored
“facts” (Meng et al.).

Conclusion
I am not particularly invested in the opposition between formalism and
historicism; I want to historicize computational methods, but as a generation
of literary and cultural critics have demonstrated, historicization does not
necessarily involve a rejection of formal concerns. Addressing neural networks
in the abstract is to assume that they share the same form, the same
architecture. Doing so ignores the fact that these networks are containers as
well as functions. They produce a series of transformations; transformations
that are increasingly constructed from the outputs of other transformations
within the network. The form, which is to say, the architecture of such
networks is important for understanding its outputs. The question of the
historicity of neural networks and their outputs is key to my argument
because this question cannot begin to be answered without formal analysis of
network architecture.

When discussing complex technical objects, it is all too easy to ignore their
forms. It is also the case that these forms are quite historically situated,
far more so than the objects that attract attention from most humanists.
As digital objects, neural networks are instantiated or concretized—as Yuk

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 17

Hui, who builds on Gilbert Simondon’s earlier, non-digital conception of
technological concretization, might put it, in a particular historical, cultural,
and technological milieu (Hui). The architecture, the network graph,
performs similar ontological work as descriptive metadata in Hui’s reading
of digital data objects. Orchestrated from already existing components and
called into being without data, neural networks are digital objects marked
by their genesis. The imaginary networks of Pitts and McCulloch, Hebb,
Hubel and Wiesel, or the multiple actually implemented mechanical and
simulated networks of Frank Rosenblatt have undergone some important
transformations over time: they have been implemented in different
programming languages, using different frameworks and paradigms, on
different hardware and in relation to different inputs and outputs. Newer
architectures are continuing to be developed as well as novel assemblages
produced from existing models. Multimodal models, switch transformers,
mixture of experts: these and other novel paradigms will complicate our
existing understanding of the temporality of deep learning and how meaning
is made through the process of inputs passing through the architecture of
neural networks.

The stakes of these differences might best be seen in a critical account of
recent machine learning architectures. Leif Weatherby and Brian Justie make
much of the distinction between the mappable feature space and unequivocal
representations found in earlier networks and the learned patterns of those
produced since the 1990s. Weatherby and Justie take up several recent
architectures including convolutional neural networks (CNNs) as used in
computer vision and transformers found in language models as examples of
what they call “indexical AI.” “Indexical AI,” they argue, “contrasts with
the symbolic AI that dominated artificial intelligence research before 2000”
(Weatherby and Justie 382). If symbolic AI names the category of shallower
networks in which features (pixels, tokens, etc) could be more readily
identified as representing aspects of the modeled object, the deep networks
Weatherby and Justie term indexical AI leaves the would-be-interpreter with
only non-representational pointers and pathways. These pointers and
pathways work within the space defined by the pre-existing network, which
they define as a “complex function with a concrete shape” (Weatherby and
Justie 393). Given this, Weatherby and Justie propose as the only strategy
available for reading the operation of contemporary networks, a concrete
analysis that follows the pointers of “complex architecture of indexical
pathways” (Weatherby and Justie 384). They propose, in short, formal
analysis of the work of the network within the form instantiated by the
network. There are other formal strategies for interpreting the large number
of units and components found within contemporary deep learning
networks, as well as a set of post-hoc methods for analyzing predictions and
decisions made by these networks (Dobson, “On Reading and Interpreting
Black Box Deep Neural Networks”).

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 18

In this essay I have attempted to demonstrate, contrary to persistent claims
otherwise, that neural networks have a historicity beyond their material
origins and that their operations and their outputs do have at least the
possibility of interpretability. The degree to which they are interpretable
and important aspects of their historicity is a function of their form. That
form is primarily registered in their architecture. Thus, any discussion of
the form of a neural network and its output needs to take into account its
particular architecture. Once the architectural form of a network is defined,
from the relatively simple two or three-layer Perceptron to a multi-layered
convolutional neural network to a transformer with attention heads, the
historicity of that architecture becomes much more obvious. Faced with a
model, one might ask why was this particular architecture selected? What
problem does it solve? What were the alternatives? The biggest challenges
for would-be-interpreters of neural networks are not found in their opacity
or the degree to which their transactions might be inapproachable, but are
the choices made by model developers to obscure their products and the
details of their construction. The GPT-4 Technical Report, published on
March 15, 2023, includes the following disclaimers “[GPT-4] it is not fully
reliable (e.g. can suffer from “hallucinations”), has a limited context window,
and does not learn from experience…. care should be taken when using the
outputs of GPT-4, particularly in contexts where reliability is important”
(OpenAI, et al. 1–2). OpenAI released this model without any description
of its training sources or details about its architecture despite these claims.
These limitations have also not prevented OpenAI from working partners,
supporting and enabling all sorts of plugins, and signing up numerous API
users. The “Limitations” section of this same report begins with the following
claim:

Despite its capabilities, GPT-4 has similar limitations as earlier
GPT models. Most importantly, it still is not fully reliable
(it “hallucinates” facts and makes reasoning errors). Great care
should be taken when using language model outputs,
particularly in high-stakes contexts, with the exact protocol
(such as human review, grounding with additional context,
or avoiding high-stakes uses altogether) matching the needs of
specific applications. (OpenAI, et al. 10)

These limitations and a host of other concerns—including, but not limited
to black-boxed or restricted access to the model, uncertainty about training
sources, the cost of token inference, toxicity in the model, environmental
concerns connected to training, etc—make OpenAI’s models inappropriate
for academic use. The stack of computational work in any scholarly field
should contain open models and highly interpretable methods as well as
critical inquiry into methods. The opacity of closed and proprietary models
like GPT-4 combined with a disinterest in critique and the historicity of
computation make for a problematic and dangerous environment. While

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 19

the different kinds of opacity (i.e., intentional, technical illiteracy, intrinsic
to complexity) found in machine learning, as Jenna Burrell argues, prompt
different interpretive strategies (Burrell 1–2), multiple forms of opacity can
easily frustrate attempts to understand the pipeline and its outputs. The
combination of intentional and complex opacity has also made possible the
amplification of unsubstantiated claims about these models—from fantasies
of artificial general intelligence to sentience—and much of the mystification
surrounding them in the present. Computational literary studies, and indeed
any efforts toward the study of language models that call themselves
humanistic, need to remain attentive to the forms of computation and
the technological and social milieu in which digital objects are created and
manipulated.

Acknowledgments
I would like to thank the members of the Computational Formalism
workshop, sponsored by the Neukom Institute at Dartmouth College, for
their comments and feedback on this work, and extend special thanks to the
workshop organizers, Tess McNulty and Laura Chapot.

Submitted: August 02, 2024 EDT. Accepted: December 03, 2024 EDT. Published: September 10, 2025 EDT.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International License (CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/

by/4.0 and legal code at http://creativecommons.org/licenses/by/4.0/legalcode for more information.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 20

works cited

Abadi, Martín, et al. “Tensorflow: A System for Large-Scale Machine Learning.” 12th USENIX
Symposium on Operating Systems Design and Implementation, 2016, pp. 265–83.

Brown, Tom B., et al. “Language Models Are Few-Shot Learners.” Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Process, 2020.

Burrell, Jenna. “How the Machine ‘Thinks’: Understanding Opacity in Machine Learning
Algorithms.” Big Data & Society, vol. 3, no. 1, 2016, pp. 1–12, https://doi.org/10.1177/
2053951715622512.

Crawford, Kate. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale
University Press, 2022, https://doi.org/10.12987/9780300252392.

Dhaliwal, Ranjodh Singh, et al. Neural Networks. University of Minnesota Press, 2024.
Dobson, James E. “Objective Vision: Confusing the Subject of Computer Vision.” Social Text, vol.

41, no. 3, 2023, pp. 35–55, https://doi.org/10.1215/01642472-10613653.
---. “On Reading and Interpreting Black Box Deep Neural Networks.” International Journal of

Digital Humanities, vol. 5, 2023, pp. 431–49, https://doi.org/10.1007/s42803-023-00075-w.
---. The Birth of Computer Vision. University of Minnesota Press, 2023.
---. “Vector Hermeneutics: On the Interpretation of Vector Space Models of Text.” Digital

Scholarship in the Humanities, vol. 37, no. 1, 2022, pp. 81–93, https://doi.org/10.1093/llc/
fqab079.

Elam, Michele. “Poetry Will Not Optimize; or, What Is Literature to AI?” American Literature, vol.
95, no. 2, June 2023, pp. 281–303, https://doi.org/10.1215/00029831-10575077.

Eve, Martin Paul. Close Reading with Computers: Textual Scholarship, Computational Formalism,
and David Mitchell’s Cloud Atlas. Stanford University Press, 2019, https://doi.org/10.21627/
9781503609372.

Frye, Northrop. “Literary and Mechanical Models.” Research in Humanities Computing 1: Selected
Papers from the ALLC/ACH Conference, Toronto, June 1989, edited by Ian Lancashire, Oxford
University Press, 1991.

Gurnee, Wes, et al. “Finding Neurons in a Haystack: Case Studies with Sparse Probing.”
arXiv:2305.01610, arXiv, 2 June 2023. arXiv.org, http://arxiv.org/abs/2305.01610.

Halpern, Orit. Beautiful Data: A History of Vision and Reason since 1945. Duke University Press,
2014, https://doi.org/10.1215/9780822376323.

Hamilton, William L., et al. “Diachronic Word Embeddings Reveal Statistical Laws of Semantic
Change.” Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 2016, pp. 1489–501, https://doi.org/
10.18653/v1/P16-1141.

Hochreiter, Sepp, and Jürgen Schmidhuber. “Long Short-Term Memory.” Neural Computation, vol.
9, 1997, pp. 1735–80, https://doi.org/10.1162/neco.1997.9.8.1735.

Hui, Yuk. On the Existence of Digital Objects. University of Minnesota Press, 2016, https://doi.org/
10.5749/minnesota/9780816698905.001.0001.

Kirschenbaum, Matthew. “Spec Acts: Reading Form in Recurrent Neural Networks.” ELH, vol. 88,
no. 2, 2021, pp. 361–86, https://doi.org/10.1353/elh.2021.0010.

Lewis, Patrick, et al. “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.”
Proceedings of the 34th International Conference on Neural Information Processing Systems, vol.
33, 2020, pp. 9459–74.

Lindgren, Simon. Critical Theory of AI. Polity Press, 2024.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 21

https://doi.org/10.1177/2053951715622512
https://doi.org/10.1177/2053951715622512
https://doi.org/10.12987/9780300252392
https://doi.org/10.1215/01642472-10613653
https://doi.org/10.1007/s42803-023-00075-w
https://doi.org/10.1093/llc/fqab079
https://doi.org/10.1093/llc/fqab079
https://doi.org/10.1215/00029831-10575077
https://doi.org/10.21627/9781503609372
https://doi.org/10.21627/9781503609372
http://arxiv.org/abs/2305.01610
https://doi.org/10.1215/9780822376323
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5749/minnesota/9780816698905.001.0001
https://doi.org/10.5749/minnesota/9780816698905.001.0001
https://doi.org/10.1353/elh.2021.0010

Meng, Kevin, et al. “Locating and Editing Factual Associations in GPT.” Advances in Neural
Information Processing Systems, vol. 35, 2022, pp. 17359–72.

Min, S. Sewon, et al. “Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work?” Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, 2022, pp. 11048–64, https://doi.org/10.18653/v1/2022.emnlp-main.759.

Offert, Fabian. “Can We Read Neural Networks? Epistemic Implications of Two Historical
Computer Science Papers.” American Literature, vol. 95, no. 2, June 2023, pp. 423–28, https://
doi.org/10.1215/00029831-10575218.

Offert, Fabian, and Ranjodh Singh Dhaliwal. “The Method of Critical AI Studies, A Propaedeutic.”
arXiv, 28 Nov. 2024, https://doi.org/10.48550/arXiv.2411.18833.

OpenAI, et al. “GPT-4 Technical Report.” arXiv:2303.08774, arXiv, 18 Dec. 2023. arXiv.org,
http://arxiv.org/abs/2303.08774.

Ouyang, Long, et al. “Training Language Models to Follow Instructions with Human Feedback.”
Advances in Neural Information Processing Systems, vol. 35, 2022, pp. 27730–44.

Pasquinelli, Matteo. The Eye of the Master: A Social History of Artificial Intelligence. Verso, 2023.
Paszke, Adam, et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.”

Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 8024–35.
Rettberg, Jill Walker. “Algorithmic Failure as a Humanities Methodology: Machine Learning’s

Mispredictions Identify Rich Cases for Qualitative Analysis.” Big Data & Society, vol. 9, no. 2,
July 2022, pp. 1–6, https://doi.org/10.1177/20539517221131290.

Rogers, Anna, et al. “A Primer in BERTology: What We Know About How BERT Works.”
Transactions of the Association for Computational Linguistics, vol. 8, Dec. 2020, pp. 842–66,
https://doi.org/10.1162/tacl_a_00349.

Rosenblatt, Frank. Design of an Intelligent Automaton. Research Reviews, Office of Naval
Research, Oct. 1958, pp. 5–13.

---. The Perceptron: A Perceiving and Recognizing Automaton (Project PARA). Report, 85-460–1,
Cornell Aeronautical Laboratory, 1957.

Rosenblatt, Frank, and Carl Keseler. “Further Simulation Experiments on Series-Coupled
Perceptrons.” Collected Technical Papers: Volume 2. Report 5, edited by Frank Rosenblatt, Cornell
University, 1963, pp. 73–98.

Sakarvadia, Mansi, et al. “Attention Lens: A Tool for Mechanistically Interpreting the Attention
Head Information Retrieval Mechanism.” arXiv:2310.16270, arXiv, 24 Oct. 2023. arXiv.org,
http://arxiv.org/abs/2310.16270.

Saphra, Naomi, and Sarah Wiegreffe. “Mechanistic?” arXiv, 7 Oct. 2024, https://doi.org/10.48550/
arXiv.2410.09087.

Shmueli, Galit. “To Explain or to Predict?” Statistical Science, vol. 25, no. 3, Aug. 2010, https://
doi.org/10.1214/10-STS330.

Szegedy, Christian, et al. “Going Deeper with Convolutions.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, 2015, pp. 1–9, https://doi.org/10.1109/
CVPR.2015.7298594.

Thamp, Ajay. Interpretable AI: Building Explainable Machine Learning Systems. Manning
Publications, 2022.

Vaswani, Ashish. “Attention Is All You Need.” Advances in Neural Information Processing Systems,
vol. 30, 2017, pp. 5998–6008.

Wasielewski, Amanda. Computational Formalism: Art History and Machine Learning. MIT Press,
2023, https://doi.org/10.7551/mitpress/14268.001.0001.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 22

https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.1215/00029831-10575218
https://doi.org/10.1215/00029831-10575218
https://doi.org/10.48550/arXiv.2411.18833
http://arxiv.org/abs/2303.08774
https://doi.org/10.1177/20539517221131290
https://doi.org/10.1162/tacl_a_00349
http://arxiv.org/abs/2310.16270
https://doi.org/10.48550/arXiv.2410.09087
https://doi.org/10.48550/arXiv.2410.09087
https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/10-STS330
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.7551/mitpress/14268.001.0001

Weatherby, Leif, and Brian Justie. “Indexical AI.” Critical Inquiry, vol. 48, no. 2, 2022, pp.
381–415, https://doi.org/10.1086/717312.

Wharton, Annabel Jane. “Defining Models.” Modelwork: Material Culture of Making and
Knowing, edited by Martin Brückner et al., University of Minnesota Press, 2021, pp. 1–17,
https://doi.org/10.5749/j.ctv1z9n20d.4.

Beyond Computational Formalism or, Architecture Matters

Journal of Cultural Analytics 23

https://doi.org/10.1086/717312
https://doi.org/10.5749/j.ctv1z9n20d.4

	Beyond Computational Formalism or, Architecture Matters
	Reading the Form of Neural Networks
	The Multiple Stages of Neural Network Training
	Interpretation: Mechanistic and Humanistic
	Conclusion
	Acknowledgments

	Works Cited

